Drone Classification Using Convolutional Neural Networks With Merged Doppler Images > 논문

본문 바로가기

논문 | Publication

Drone Classification Using Convolutional Neural Networks With Merged D…

페이지 정보

작성자 최고관리자 작성일17-09-22 14:45 조회421회 댓글0건

본문

Byung-Kwan Kim, Hyun-Seong Kang, and Seong-Ook Park, “Drone Classification Using Convolutional Neural Networks With Merged Doppler Images”, IEEE Geoscience and Remote Sensing Letters, Vol. 14, Iss. 1, Jan. 2017

Abstract:

We propose a drone classification method based on convolutional neural network (CNN) and micro-Doppler signature (MDS). The MDS only presents Doppler information in time domain. The frequency domain representation of MDS is called as cadence-velocity diagram (CVD). To analyze the Doppler information of drone in time and frequency domain, we propose a new image by merging MDS and CVD, as merged Doppler image. GoogLeNet, a CNN structure, is utilized for the proposed image data set because of its high performance and optimized computing resources. The image data set is generated by the returned Ku-band frequency modulation continuous wave radar signal. Proposed approach is tested and verified in two different environments, anechoic chamber and outdoor. First, we tested our approach with different numbers of operating motor and aspect angle of a drone. The proposed method improved the accuracy from 89.3% to 94.7%. Second, two types of drone at the 50 and 100 m height are classified and showed 100% accuracy due to distinct difference in the result images.

댓글목록

등록된 댓글이 없습니다.


연구단장 : 심현철
대전광역시 유성구 대학로 291 한국과학기술원 KI빌딩(E4) C318호
TEL : (042) 350-8245
Copyright ⓒ Civil RPAS Research Center. All Rights Reserved. ADMIN

모바일 버전으로 보기